FARF: A Fair and Adaptive Random Forests Classifier
نویسندگان
چکیده
As Artificial Intelligence (AI) is used in more applications, the need to consider and mitigate biases from learned models has followed. Most works developing fair learning algorithms focus on offline setting. However, many real-world applications data comes an online fashion needs be processed fly. Moreover, practical application, there a trade-off between accuracy fairness that accounted for, but current methods often have multiple hyper-parameters with non-trivial interaction achieve fairness. In this paper, we propose flexible ensemble algorithm for decision-making challenging context of evolving settings. This algorithm, called FARF (Fair Adaptive Random Forests), based using component classifiers updating them according distribution, also accounts single alters fairness-accuracy balance. Experiments discriminated streams demonstrate utility FARF.
منابع مشابه
Random Forests and Adaptive Nearest Neighbors
In this paper we study random forests through their connection with a new framework of adaptive nearest neighbor methods. We first introduce a concept of potential nearest neighbors (k-PNN’s) and show that random forests can be seen as adaptively weighted k-PNN methods. Various aspects of random forests are then studied from this perspective. We investigate the effect of terminal node sizes and...
متن کاملeRFSVM: a hybrid classifier to predict enhancers-integrating random forests with support vector machines
BACKGROUND Enhancers are tissue specific distal regulation elements, playing vital roles in gene regulation and expression. The prediction and identification of enhancers are important but challenging issues for bioinformatics studies. Existing computational methods, mostly single classifiers, can only predict the transcriptional coactivator EP300 based enhancers and show low generalization per...
متن کاملDiscriminating between Glaucoma and Normal Eyes Using Optical Coherence Tomography and the ‘Random Forests’ Classifier
PURPOSE To diagnose glaucoma based on spectral domain optical coherence tomography (SD-OCT) measurements using the 'Random Forests' method. METHODS SD-OCT was conducted in 126 eyes of 126 open angle glaucoma (OAG) patients and 84 eyes of 84 normal subjects. The Random Forests method was then applied to discriminate between glaucoma and normal eyes using 151 OCT parameters including thickness ...
متن کاملAutomatic Multi-Modality Segmentation of White Matter Hyperintensities Using a Random Forests Classifier
All the images are first preprocessed in three steps: I) noise reduction [1], II) intensity nonuniformity correction [2] and III) linear intensity normalization into range (0-100) using an intensity histogram matching technique. The T1w and FLAIR images are linearly co-registered using a 6 parameter rigid registration [3]. The T1w images are first linearly and then nonlinearly registered to an ...
متن کاملconstruction and validation of a computerized adaptive translation test (a receptive based study)
آزمون انطباقی رایانه ای (cat) روشی نوین برای سنجش سطح علمی دانش آموزان می باشد. در حقیقت آزمون های رایانه ای با سرعت بالایی به سمت و سوی جایگزین عملی برای آزمون های کاغذی می روند (کینگزبری، هاوسر، 1993). مقاله حاضر به دنبال آزمون انطباقی رایانه ای برای ترجمه می باشد. بدین منظور دو پرسشنامه مشتمل بر 55 تست ترجمه میان 102 آزمودنی و 10 مدرس زبان انگلیسی پخش گردید. پرسشنامه اول میان 102 دانشجوی س...
ذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Lecture Notes in Computer Science
سال: 2021
ISSN: ['1611-3349', '0302-9743']
DOI: https://doi.org/10.1007/978-3-030-75765-6_20